

UNIVERSITY

Model Compression for Transformer Models in Synthetic Tabular Data Generation

Problem

- Transformer models demonstrate promise in synthetic tabular da generation tasks but often require significant computational resources.
- Their large size and complexity can set back deployment on resource-constrained devices, particularly in healthcare and othe sensitive fields.
- Key Challenge: How can we reduce model size and computation requirements without compromising performance too much?

Background

- Transformer models have revolutionized machine learning, particularly in natural language processing and data generation tasks.
 - Self-Attention: Allows the model determine the relevance of ea word in a sentence to every other word, regardless of their position.
 - Unlike other models like recurrent neural networks (RNNs), while process sequences step by step, Self-Attention processes all tokens at once.
 - This makes them more effective at capturing patterns in lon sequences.
- Limitations:
 - High computational and memory costs.
 - Not suitable for deployment on devices with limited resources.

Problem Motivation

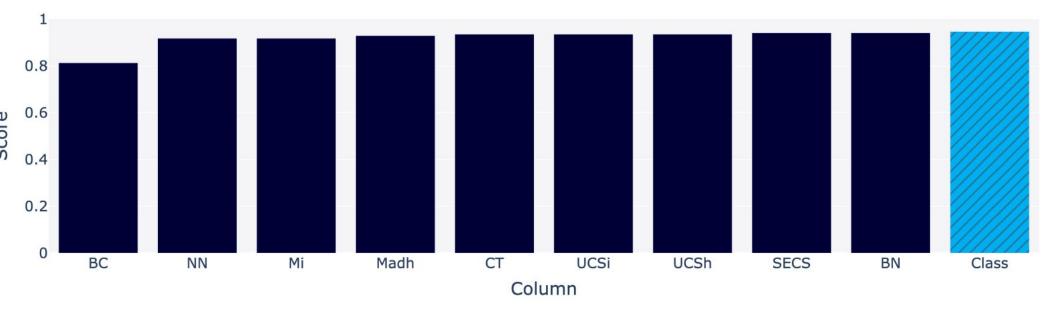
- Transformer models have been shown to excel in generating synth tabular data, which is crucial for fields like healthcare.
- Their large size and computational intensity make them impractic for use on devices with limited resources (e.g., edge devices, mobi devices).
- Reducing model size and computational load without degrading performance is essential to allow real-world applications in resource-constrained environments.
- This research would allow for easier training and use of transformed models for high-quality synthetic data generation while maintaini and protecting privacy.

Sebastian Ibarra-Perez **Computer Science Department** San Diago Stato University

San Diego State University							
	Approach						
•	To optimize transformer models for resource-constrained						
	environments. This research will employ the following model						
	compression techniques:						
	 Pruning: Removing redundant model parameters without affecting 						
	the model's core functionality.						
	• Knowledge Distillation: Training a smaller model (student) using						
	the outputs of a larger trained model (teacher) to retain performance.						
	Workflow:						
•	 Train an initial transformer model for synthetic tabular data 						
	generation on medical datasets.						
	 Apply and compare each compression method. 						
	 Evaluate performance and efficiency. 						
	Approach details						
•	REalTabFormer						
	 Open-source transformer-based model specifically designed for 						
	generating high-quality synthetic tabular data.						
•	Train on real medical data, for baseline performance						
	 Breast Cancer Dataset: 						
	Feature Type - Integer						
	Rows - 699						
	Columns - 9						
•	Apply compression techniques to the trained model, and evaluate						
	 Evaluate baseline model. 						
	 Evaluate compressed model. 						
	 Compare results to see improvement. 						
	Evaluation						
•	Goals						
	 Compressed model must maintain as much accuracy as possible 						
-	while increasing inference speed, and reducing model size						
•	 Metrics SDMetrics - Synthetic Data Vault 						
	 Provides a set of tools for evaluating synthetic data. Defines 						
	<pre>metrics for statistics, efficiency, and privacy.</pre>						
	 Quality Report Evaluates how well the synthetic data captures 						
	mathematical properties in real data.						
	 Diagnostic Report Runs basic checks on the synthetic data to give a general 						
	sense of the strengths and weakness of the model.						
	 Runs basic checks on the synthetic data to give a genera 						

Results

• **Baseline model**: 6 layers, 12 attention heads Data Quality: Column Shapes (Average Score=0.92)



• Data Diagnostic Average: 99.97% • Time for generating 100 samples: 10.7348 seconds • 9.31 samples per second

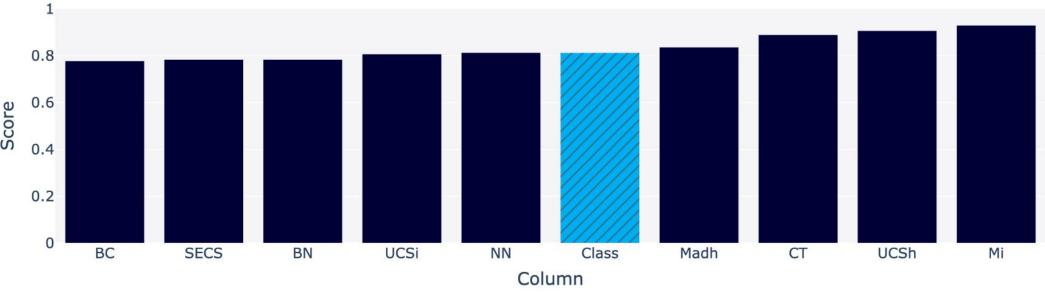
nin

r data

esigned for

evaluate

• **Smaller model**: 4 layers, 8 attention heads Data Quality: Column Shapes (Average Score=0.83)



• Data Diagnostic Average: 99.95%

• Time for generating 100 samples: 6.2887 seconds 15.91 samples per second

Baseline Model Pruning

#	Sparsity Level	#	Quality Score	#	Diagnostic Score	#	Non-zero F
0	0		0.922602		0.995215		
1	0.1		0.829435		0.998405		
2	0.2		0.799961		0.999468		
3	0.3		0.742341		0.997076		
4	0.4		0.729297		0.992557		
5	0.5		0.714096		0.97395		
6	0.6		0.700561		0.944976		
7	0.7		0.662955		0.934078		
8	0.8		0.630583		0.923179		
9	0.9		0.559951		0.85832		

Conclusions

Model Comparison

• Baseline Model (6 layers, 12 heads):

- Diagnostic Score: 99.97%
- Speed: 9.31 samples/sec
- Data Quality: 0.92 (column shape avg.)
- Smaller Model (4 layers, 8 heads):
 - Diagnostic Score: 99.95%
 - Speed: 15.91 samples/sec (~70% faster)
 - Data Quality: 0.83

Sparsity Impact

- Higher sparsity reduces parameters (43.4M \rightarrow 5.2M) but lowers:
 - Quality Score: $0.92 \rightarrow 0.56$
- Diagnostic Score: $99.95\% \rightarrow 85.83\%$

Optimal Trade-off: Low to moderate sparsity (0.1-0.4) seems to balance size and performance.

References [1] Solatorio, A. V., & Dupriez, O. (2023). REaLTabFormer: Generating realistic relational and tabular data using transformers. arXiv preprint arXiv:2302.02041. https://arxiv.org/abs/2302.02041 [2] Vaswani, A. (2017). Attention is all you need. Advances in Neural Information Processing Systems.https://arxiv.org/abs/1706.03762 [3] Cui, B., Li, Y., & Zhang, Z. (2021). Joint structured pruning and dense knowledge distillation for efficient

transformer model compression. Neurocomputing, 458, 56-69. https://doi.org/10.1016/j.neucom.2021.05.084

